KS4 Combined Science (Trilogy) HW 3 – Atomic Structure & Distillation

Q1. The diagram below represents a neon atom.

(a)	What is the name of the centre of the atom?	
(b)	Which particle has a positive charge?	(1)
(c)	Which particle has the smallest mass?	(1)
(d)	What is the electronic structure of neon? Use the diagram above.	(1)
(e)	There are 18 particles of neon in every 1 000 000 particles of air. Which equation shows how to calculate the percentage of neon particles in the air?	(1)
		(1)

Q2. A student used paper chromatography to investigate the colours in different inks.

Diagram on next page shows the apparatus the student used.

(a) The student made **two** mistakes in setting up the apparatus. Identify the **two** mistakes.

Describe	trie pi	obiem	each	IIIIStake	would	cause.

Problem _____

Mistake 2

Problem _____

(4)

(1)

(b) The student then set up the apparatus without making any mistakes.

Diagram below shows his results.

Mistake 1

What colours are in the black ink?

	(2
Use Figure above (part b) to corred ink.	mplete the table below, then calculate the Rf value for
	Distance in mm
Distance moved by red ink	
Distance from start line to solven	nt front
$R_{f} =$ distance moved by solvent from	
	R _f value =
	hat the R_f value for the blue ink is greater than the Rf

Page 3 of 4