LEARNER: TEACHER: TARGET: ## **LEARNER PROGRESS PATHWAY** ## **BIBARY LOGIC** | DIDARY LUGIC | | | | | |--|---|--|--|---| | ACQUIRING
18% | DEVELOPING
38% | SECURING
56% | CONSOLODATING
74% | EXTENDING
83% | | LEARNER PROGRESS | | | | | | I can recognise that computers use binary to make decisions | I can demonstrate how digital
devices use binary to make simple
decisions using AND and OR criteria | I understand that different Logic
Gates can be combined to create
Logic Circuits | I can independently work out the
outputs for different logic circuits
which contain 2 Logic Gates and 3
inputs using Truth Tables | I can solve Logic Circuits which
contain more than two Logic Gates
and can identify and correct errors in
Truth Tables | | I can recognise that binary is 1s and
Os and that a 1 is TRUE or ON and 0 is
FALSE or OFF | | I can interpret a simple Logic Circuit
with two gates and three inputs
using a Truth Table, but may need
some help doing this | I can independently work out the outputs for XOR and NAND circuits using Truth Tables | I can discuss where Logic Circuits are used in real world | | can use binary to make simple
decisions using AND and OR criteria | I can correctly drawer and annotate
AND OR and NOT Gate diagrams, but
may need some assistance with the
annotations | I understand that Logic Gates can be combined together to form XOR and NAND circuits | I can identify and correct errors in
Truth Tables | I can solve real world Logic Circuits using diagrams and Truth Tables | | I know that computers use
transistors to store binary values,
where 1 represents TRUE or ON and
O represents FALSE or OFF | I am confident at describing how
digital devices can make decisions
using AND OR and NOT Gates | I can work out the outputs from XOR and NAND circuits with some guidance | I can identify two or three real world
examples of devices which use Logic
Circuits | | | l understand that transistors are built
on silicon to form circuits | I understand that a logic gate can
have a different number of possible
outputs depending on the number of
inputs | | | _ | | understand that transistors in a digital circuit can be combined to form AND OR and NOT Gates can recall and draw the correct diagrams to show an AND OR and NOT Gate, but may need some | I can independently show the inputs and outputs of AND OR and NOT Gates using diagrams and Truth I can show the possible combinations of outputs for AND OR and NOT Gates | | | | | I can complete simple Truth Tables
for AND OR and NOT Gates, but may
need some assistance | I can workout the possible number of outputs based on 1, 2, 3 and 4 inputs, but may need some guidance | | | | **LEARNER:** **TEACHER:** **LEARNER PROGRESS PATHWAY** TARGET: I can correctly recall the number of I can interpret a simple Logic Circuit inputs for each logic gate with two gates and three inputs using a diagram